
Inelastic Analysis ― Plastic 
Analysis



• ELASTIC ANALYSIS IS VALID FOR
– Small Displacements &/or
– Linear material Properties i.e stress-strain 

relationship remains linear

• NON-LINEAR PROBLEM
Geometrical Nonlinear Problem --- If the 

displacements are not small i.e. large 
displacements problems.

Material Nonlinear/Inelastic/Plastic Problem ---
the stress strain relationships of the material is 
non-linear



– A Problem can be both Geometrically & Materially 
Non-linear.

– Accordingly, in the literature the terminology like 
• LARGE DISPLACEMENT & SMALL STRAIN PROBLEM, 
• SMALL DISPLACEMENT & LARGE STRAIN PROBLEM 
• LARGE STRIAN & LARGE DISPLACEMENT PROBLEMS
are  mentioned.

• LARGE DISPLACEMENT& SMALL STRAIN PROBLEM
qThis deals with Geometrically Nonlinear problems. For 

this category, strain-displacements relationships are 
nonlinear but stress-strain relationships are linear.



• SMALL DISPLACEMENT & LARGE STRAIN PROBLEMS
q This is equivalent to Material Nonlinear Problems where 

the large strain along with material nonlinearity is 
governing criterion for Nonlinearity in the system

• LARGE STRIAN & LARGE DISPLACEMENT PROBLEMS
q Both material nonlinearty & nonlinear relationship of 

strain and displacement is involved.



• Linear and Nonlinear Structures ―
Material Nonlinearity
– Different  materials possesses different properties,  

load resistance and deformation characteristics.



• As the initial slope of the curve is different for 
these material 
which ⇒ E is different
We Know that EI directly governs the 
displacements of the Structure

• Linear Structure― when the stresses developed are 
within Elastic Limit
• Non-linear Structure ― Stresses developed are in the 

plastic range or non-linear range.
• Several factors influence the stress-strain properties of 

a material including the loading rate(load history) and 
the duration of the load, environmental condition.



• Geometrical Nonlinearity― In addition to 
material nonlinearity, some structures may 
exhibit non-linear characteristics in its overall 
behavior due to change in its shape under 
loading by undergoing displacements by a 
significant amount (large displacements) to 
maintain its overall equilibrium.
Examples are 
(i) deformation of cable structures
(ii) deformation of Pole Vault  



• For nonlinear problems
– No one to one correlation between stress (!)	and 

strain $ exists
– Not	possible	to	express	the	stress-strain	
relationship	in	terms	of	total	stress	and	total	
strain	

And	hence,	for	elastic-plastic	materials,	only	a	
unique	incremental	relationship	between	stress	
and	strain	increments	can	be	written	and	
expressed	in	terms	of	stress	and	deformation		
history



• The strain increment d! is	decomposed	into	
two	parts:	the	elastic	strain	increment	d!e
and	the	plastic	strain	increment	d!p i.e.

d! =	d!e +	d!p (1)
d9 =	Et d! =E d!e =	Ep d!p (2)



• Where d! is	the	corresponding	stress	increment,	E	
the	Youngo’s modulus,	Et and			Ep the	tangential	
modulus	and	plastic	modulus	respectively.	E,	Et
and	Ep may	be	derived	from	an	experimental	
stress-strain	curve	under	a	monotonic	loading	
condition.	As	given	below:



• For a given elastic-plastic state, a stress 
increment or a strain increment may cause 
PLASTIC LOADING or elastic UNLOADING.

• In case of plastic loading, new plastic 
deformation accumulates. In case of elastic 
unloading, no new plastic deformation occurs.

• For obtaining the solution of an elastic-plastic 
problem, the actual elastic-plastic material 
behaviour must be idealised. For 1-D probles, 
the elastic plastic behaviour can be 
represented by idealised stress-strain relations 
together with an assumed hradening rule.



PLASTIC ANALYSIS
Working stress method: is based on the working loads. At Working loads

the stress distribution (Both in steel & Conc) is assumed linear and 
design is based on assuming the linear stress strain relationships 
ensuring that the stresses both in conc. & steel do not exceed !y at 
service loads. 

⇒service load/working load = ultimate or yield strength of material
factor of safety

Or factor of safety is the ratio of ultimate load and working or service 
load

Service Load & Working loads are one and same
The load for which the structure is considered to be designed.



Elastic Theory
(1) Stress-strain relation assumed to be linear
(2) Structure fails if the stress at the maximum 

stressed point reaches yield stress
(3) The service load is restricted to the value 

such that corresponding to maximum 
stressed point, the stress is equal to the 
working stress

(4) i.e. the structure can take working loads.



• In the elastic analysis it is assumed that the 
structure would fail if the design load is 
applied the factor of safety times.

• An elastic analysis of structure is important to 
study the performances, especially with rgard
to serviceability, under the service loading for 
which the structure is designed.

Disadvantages:
• Does not provide a uniform overload capacity 

for all sections of members & hence the need 
of ultimate strength theory emerged



• Plastic design is based on the philosophy of 
failure of member or srtucture rather than 
their condition at working stress or service 
loads.

• A member is designed employing the criteria 
that the structure will fail at a load substantially
higher than the working or service loads.



INTRIDUCTION TO PLASTIC ANALYSIS
The stress-strain curve is linear between the origin 
and the elastic limit, which is very close to the yield 
point; After the upper yield point, there is a sudden 
drop in stress to lower yield point. The designer 
normally treats the lower yield point as the limit of 
proportionality. From this yield point to the ultimate 
stress point, 



• the zone is called strain 
hardening zone. At ultimate 
stress point, neck formation 
starts and the load carrying 
capacity reduces. Finally, 
breaking takes place at stress 
(normal stress) which is less 
than the ultimate stress. 



Rationale for Plastic Analysis

Now consider stresses across the highly stressed section of the simply 
supported beam as load increases

• We take for example an arbitrary section shown in Fig. (a). For small 
deformation, when the bending stresses are small and within the elastic 
range, i.e., (! < !y the stress distribution is linear across the section as in 
stage I in Fig. (b). In this case, the NA will pass through the centroid of the 
section. As the moment is further increased, stresses in either of the 
extreme fibres reach yield value shown in stage II in Fig. (b), with NA still 
passing through the centroid. The value of the moment corresponding to 
this yield is called the yield moment, My . As the moment increases 
further, the bottom fibre also yields and yielding at top fibre progresses 
inwardly shown in stage III in Fig. (b). In this case, the NA is shifted below 
the centroidal axis to satisfy the equilibrium requirements and is 
determined from the consideration of the total compressive force equal to 
the total tensile force over the cross section. 

M M



• The yielding progresses inwardly from both top and bottom 
fibres towards NA with further increase in moment shown 
in stage IV in (b). When the load reaches its ultimate value, 
the yield progresses right up to the NA and the entire 
section becomes fully plastic as in stage V in Fig. (b). The 
moment corresponding to this stage is called fully plastic 
moment, Mp. 

• If we neglect the strain hardening in the outer fibres, there 
cannot be any further increase in moment. Therefore, the 
plastic moment represents the limiting strength of the 
beam in bending. The NA in the case of fully plastic section 
will pass through the axis of equal areas. If both axes of a 
section are symmetrical, then the locations of NA in elastic 
and fully plastic conditions remain unchanged.

• When the fully plastic moment is reached, the section will 
act as a hinge permitting rotation. The yield will spread in 
the longitudinal direction with further increase in load. 



• Now, let us consider the load carrying capacity of a 
fixed beam. As the bending moment is maximum at 
supports, first extreme fibres at supports yield. For 
further increase of load, entire section at supports 
yields. Even at this stage, the structure will not 
collapse, since a beam with two hinges at ends is a 
stable structure. For further load, it acts as a simply 
supported beam till all fibres at the mid-span section 
yield. 
Hence one can say that 

• the elastic theory under estimates the load carrying 
capacity of the structure. For indeterminate 
structures, this under estimation is still high.  

• not giving the correct idea about the load carrying 
capacity of the structures. 



PLASTIC MOMENT OF RESISTANCE 

• The moment of resistance developed by a fully plastic section is called the fully plastic moment, Mp. 
For the evaluation of the fully plastic moment, we make the following assumptions: 

1. The material is homogeneous and isotropic in the elastic as well as in the plastic states. 
2. Hooke's law is applicable in the elastic stage of the material. In the plastic stage, the stress remains 

constant. 
3. The yield stress and the modulus of elasticity have the same values both in compression and in 

tension. 
4. Plane sections remain plane both before and after bending. 
5. No resultant axial force exists on the beam. 
6. The cross section of the beam is Symmetrical about an axis which passes through the centroid of 

the beam as well as parallel to the plane of bending. 
7. Every fibre of the beam can stretch and shorten under stress both longitudinally and laterally 

without any restraint from other layers. 

• Let us now consider a cross section of a beam shown in Fig.(a). We apply a fully plastic moment Mp of 
sagging nature on the beam  shown in (b). Due to the application of moment Mp every fibre of the 
cross section is stressed to the yield level of !y and the corresponding stress distribution is 
rectangular as in Fig. (c). The nature of stress in fibres above the NA is compressive and that below is 
tensile. We denote the area of the upper portion of the cross section as A1 and the distance of its CG 
from the NA as y1 shown in Figure (a). Similarly, we denote the area of the lower portion as A2 and its 
CG distance Y2 . 



• The compressive force acting on the upper portion of the cross section, C = !y Al .The 
tensile force acting on the lower portion, T = !y A2 . From equilibrium consideration, 
C = T, i.e., i.e. !y Al = !y A2 or Al = A2 , 
However, total area      A = Al + A2,   Al =A2 =A/2. 

• Therefore, the neutral axis (NA) divides the cross section into two equal parts. 
• As the CG of compressive and tensile forces lie at a distance from the NA, they 

would give rise to a couple which has to be equal to the externally applied moment, 
Mp. Therefore, taking moment about NA, we get !y Al y1 + !y A2 y2= Mp. We know Al
= A2 = A/2. So, 

(1)

S where S = (2)

Equation (1), is the expression for the plastic moment of resistance of a section. 

PLASTIC MODULUS 
• In Eq. (1), the quantity is called the plastic section modulus.

It is the sum of the moments of areas of the compression and tension zones about 
NA 













SHAPE FACTORS FOR VARIOUS SECTIONS 
• We know, that the ratio of the moment of inertia about the NA of a 

section to the distance of the extreme fibre is called the section 
modulus, Z. Let the moment of inertia be I and the distance of 

extreme fibre be yc ,  Then 





















• LOAD FACTOR
• SHAPE FACTOR
• PLASTIC SECTION MODULUS
• FACTOR OF SAFETY (IN ELASTIC METHOD)



N                               A

1/ρ=Ø is the curvature of the NA













EFFECT OF AXIAL LOAD ON PLASTIC MOMENT
Consider a rectangular beam whose cross-section is shown in Figure (a) 
below. The beam is under the action of combined effect of axial thrust 
and the bending moment. Let the section be fully plastic under this 
combined effect of axial force     and a bending moment     . 
In the figure, the areas yielding in compression are shaded while the 
areas under tension are hollow. The gross cross-section   may be 
considered as made up of areas as shown in Figure (b) & (c). The 
resultant of the stresses acting on the area in Figure (b) is equal to the 
applied axial load .



In the figure, the areas yielding in compression are shaded while the
areas under tension are hollow. The gross cross-section may be
considered as made up of areas as shown in Figure (b) & (c). The
resultant of the stresses acting on the area in Figure (b) is equal to the
applied axial load .

(1)
Where                     is called the squash load of the section. We know the 
ratio         is called the squash load ratio and is usually denoted by n. For 

a rectangular section,              , as shown by Equation (1). 

For the beam shown in Figure (a) above, under the combined action of 
axial force     acting through the Plastic NA of the section of Figure (b) 
and an applied bending moment      , the shaded section shown in Fig (b) 
shall be under pure compression, the  and hence cause no FLXURE.



The resultant of the stresses acting on the areas as shown in Fig  
(c) shall only be contributed by Fig (c), is a couple equal to the 
applied plastic moment      .  From the Figure (a), (b) & (c) above, 
we can write  

On simplifying, we get

(2)

Where is the plastic moment of the section in the presence 
of axial load P, and is the plastic moment in pure bending. 
Dividing Eqn (2) by .

(3)

Where plastic section modulus in the presence of axial & 



that in pure bending. Eqn. (2) shows that the plastic moment of a
rectangular section is always reduced by the presence of axial load
acting in the plane of equal area axis. It should also be noted that Eqn.
(1) is true irrespective of whether the load is compressive or tensile.



ePlastic            P P N           A
CG               P

These two forces forming 
a couple M= Pxe



Collapse Load and Collapse Mechanism
The load Carrying capacity of any frame or beam depends only on 
the value of Plastic Moment of Resistance     .

In the plastic analysis, it is assumed the elastic deformations are 
small and that the behaviour is Perfectly Plastic or Rigid-Plastic.

M M

! !
Elastic-plastic Rigid-plastic

In	all	further	discussions,	unless	otherwise	specified,	we	shall	
assume	a	rigid-plastic	moment	curvature	relationship.	It	is	also	
assumed	that	the	effect	of	axial	and	shear	deformation	are	very	
small	and	hence	considered	negligible.

Fig. 14.6-1    

(a)                                            (b)



EXAMPLE: To determine the collapse load

As a first example of the determination of the
collapse load of a structure by plastic analysis,
consider the two-span beam in Fig. 14.6-2(a),
having a uniform cross section of plastic moment of
resistance Mp. The beam supports a working load P,
which is sufficiently low for stresses everywhere to
be within the elastic range. The bending moment
diagram is as in Fig. 14.6-2(b). As the load P is
progressively increased to say βP, the bending
moment at section D reaches Mp and a plastic hinge
forms there, as shown in Fig. 14.6-2(c). The beam is
originally statically indeterminate and has one
redundancy, but the formation of a plastic hinge
removes that redundancy so that the beam in Fig.
14.6-2(c) is statically determinate. The bending
moment diagram is now represented by abdc in Fig.
14.6-2(d). As the load is further increased, the
bending moment at D remains constant at the full
plastic value Mp, while that at B continues to grow
until eventually, at a load of say λP, the moment at
B also reaches Mp.



The bending moment diagram is now ab'dc in Fig. 14.6-2(d), and there are two plastic 
hinges - at B and at D. Reference to the moment-curvature curve in Fig. 14.6-I(b) shows 
that the beam now undergoes unrestrained rotation at B and D; in other words, the 
structure has become a mechanism. The load λP at which the structure collapses as a 
mechanism is called the collapse load or the ultimate load and the factor λ which is 
the ratio of the collapse load to the working load, is called the collapse load factor, or 
simply the load factor. The collapse load, and hence the load factor, can easily be 
determined from Fig. 14.6-2(e). Consider a plastic hinge rotation ! at B; then from the 
geometry of Fig. 14.6-2(e), that at hinge D must be 2!. 

This method of solution is called work method or mechanism method wherein the 
collapse mechanism is identified and the collapse load is then obtained from the 
work eqn.

(Using principle 
of Virtual work)



METHOD OF PLASTIC  ANALYSIS

(1) Work Method or Mechanism Method or Virtula Work Method

(2) Statical Method or Graphical Method (Lower Bound Theorem)

(3) Uniqueness Theorem 

(4) Kinematic Method (Upper Bound Theorem)

(1) Work Method or Mechanism Method : Already discussed

(2) Statical Method:

In this method, the redundant moments are selected and the bending 
moment diagram is constructed by superimposing the free moment-
diagram on to the redundant-moment diagram in such a way that the 
mechanism is formed       the value of the collapse load is then calculated 
from statics.

Example:   Consider again the beam of Fig. 14.6-2 (a)



(2) Statical Method: or Lower Bound Theorem.

It states that ‘if a distribution of bending moments can be found such that the 
structure is in equilibrium under the external loading and such that nowhere is 
the plastic moment of resistance Mp exceeded, then the structure will not 
collapse under that loading-however 'unlikely' that distribution of moments may 
appear. The theorem is often referred to as the safe theorem. (The proof of this 
theorem will be given in Section 14.9).

In this method, the redundant moments are selected and the bending moment 
diagram is constructed by superimposing the free moment-diagram on to the 
redundant-moment diagram in such a way that the mechanism is formed       the 
value of the collapse load is then calculated from statics.

Example:   Consider again the beam of Fig. 14.6-2 (a)



Example: 
As an example, consider again the beam in 
Fig. 14.6-2(a)- the collapse mechanism of 
Fig. 14.6-2(e) is redrawn in Fig. 14.6-3(a). 
Suppose the continuity moment at the 
intermediate support B is selected as the 
redundant, then the bending moment 
diagram may be sketched  as in Fig. 14.6-
3(b), in which ab2c is the redundant-
moment diagram, and b1d2c is the free 
moment diagram due to the load λP acting 
on the simple span BC. If the magnitude of 
b1b2 is so chosen that b1b2 = d1d2 = Mp, then 
the beam will collapse in the mechanism of 
Fig. 14.6-3(a). From the geometry of Fig. 
14.6-3(b): 

P



Necessary conditions for determination of collapse load
The following conditions are must to be satisfied to have collapse of the 
structure.

(1) the Mechanism Condition
(2) the equilibrium condition &
(3) the yield condition

With reference to the Fig. 14.6-3,
The Mechanism Condition is satisfied i.e. sufficient (in this case=2) no. of plastic 
hinges have formed to convert the structure into mechanism.

The equilibrium condition is satisfied (ref. Fig 14.6-3(b)) where the bending 
moment distribution is in equilibrium with λP (meaning that the BM induced by 
λP satisfy ΣM=0 at the locations of Plastic hinges (i.e. at points B and D)).

The yield condition is meant the condition that the bending moment (ref. Fig 
14.6-3(b)) nowhere exceeds Plastic moment of resistance MP. (implies nowhere, 
the ordinate of BMD(shaded) exceeds Mp).



These three conditions are necessary and sufficient for the
determination of the collapse load factor of a structure.

(3) Uniqueness Theorem: It sates that if a bending moment
distribution can be found which satisfies the three conditions
of Mechanism, equilibrium and yield --- then the load which
correspond to such a moment distribution will be true
collapse load.



Solution:
(a) Using The Work Method (or the Virtual Work Method)
There are three possible collapse Mechanism as shown in Figs. 14.6 (b), (c) and (d).

Finding out the collapse load for each of these Mechanisms as shown below.



There are three critical sections where BMs 
could be maximum viz. Fixed support, below 
point load P and below point load 2P. Further, 
we know that I=1 and hence 02 hinges are 
sufficient to convert it into MECHANISM. Now 
examining all the three possible mechanisms. It 
is observed that the one in Fig. 14.6-4(b) gives 
the lowest collapse load. This means that as the 
magnitude of P is gradually increased from zero, 
the collapse mechanism in Fig. 14.6-4(b) will be 
the first to form (correspond to lowest load), 
when P reaches 5Mp/4L. 

The other two mechanisms cannot form unless 
this one is prevented from forming, for example 
by strengthening the cross sections at points 
where hinges would have formed. We therefore 
conclude that P = 5Mp/4L is the correct collapse 
value as the first mechanism at the lowest load 
will cause the collapse of the structure and the 
other two mechanism will not be forming.



This ordinate >Mp

This ordinate >Mp

(b) Using the Statical Method:
Figs. 14.6-4(e), (f) and (g) show three bending moment 
diagrams. Each diagram has been so drawn that the moment 
ordinate is exactly equal to the plastic moment Mp at two  
sections. In Figs. (e) and (f), a1 a2 b is the moment diagram 
due to the redundant moment Mp at A, and a1c2d2b is the 
simple-span moment diagram due to the external loads P and 
2P. 

In Fig. (g) the moment Mp at section C has been selected as 
the redundant; that is, the triangle a1a2c2bc1a1 is the 
redundant moment diagram (The reader should verify this. 
Hint: the moment Mp at C produces shear forces.), and 
ala3cld2b is the moment diagram for the loads P and 2P acting 
on the beam with a hinge at C. The collapse values of P can 
be calculated from the geometry of the three bending 
moment diagrams. 

The three values for P obtained by the statical method agree 
with those obtained by the work method. As before, we 
conclude that the lowest value, namely P = SMp/4L, is the 
correct one. 



This ordinate >Mp

This ordinate >Mp

COMMENTS 

In the statical method above, we need not have calculated

the collapse value of P for all the three bending moment

diagrams. A closer examination will immediately reveal that

both Figs. 14.6-4(f) and (g) violate the yield condition. In Fig.

14.6-4(f), the moment ordinate d1d2 exceeds Mp, which

means that the collapse mechanism in Fig. 14.6-4(c) cannot

occur unless plastic hinge formation is prevented at D by

strengthening the cross section there. Similarly, in Fig. 14.6-

4(g), a2 a3 exceeds Mp; again, the mechanism in Fig. 14.6-4(d)

cannot occur unless plastic hinge formation at A is

deliberately prevented. The bending moment diagram in Fig.

14.6-4(e), on the other hand, satisfies the three conditions of

mechanism (with plastic hinges at A and D), equilibrium (by

the manner of its construction) and yield (since moment

ordinates nowhere exceed Mp). Therefore we can at once

conclude from the uniqueness theorem that the

corresponding collapse load is the correct one; there is in fact

no need to consider any other mechanisms.



(4) Upper Bound Theorem: (Also called as Kinematic Theorm)
It states that ‘for a given structure subjected to a given loading, the magnitude 
of the loading which is found to correspond to any assumed collapse mechanism 
must be either greater than or equal to, but cannot be less than, the true 
collapse load’. 

Therefore, in an analysis we simply compute the collapse load for each possible 
mechanism and accept the lowest value as the correct one, as we did 
in the work method above. 

In this method, number of possible mechanisms are studied. A statical check is 
applied by ensuring that the moment ordinate nowhere exceeds the plastic 
moment Mp for each mechanism correspond to collapse bending Moment 
Diagram. 

If the moment ordinate nowhere exceeds the plastic moment Mp then the 
uniqueness theorem guarantees that this mechanism will give the true collapse 
load. 

If Mp is exceeded somewhere, then the yield condition is not satisfied, and the 
search for a correct collapse mechanism must continue. 



The upper bound theorem is often referred to as the unsafe theorem, because, interpreted 
in a design sense, it states that the value of the plastic moment Mp obtained on the basis of 
an arbitrarily assumed collapse mechanism is smaller than, or at best equal to, that actually 
required. 

Example 14.6-2. A propped uniform cantilever is to be designed to support the 
loads in Fig. 14.6-6(a). Explain how the lower bound theorem may be used to 
select a value of the plastic moment of resistance, Mp, which will guarantee that 
the beam will not collapse under the loading. 

SOLUTION Fig. 14.6-6(b), (c) and (d) show three bending moment diagrams which 
are in equilibrium with the external loads P and 2P. These are discussed in turn: 
Fig. 14.6-6(1)): The bending moment diagram is obtained by superposition of the 
simple-beam moment diagram a1c2d2b on to the diagram a1a2b due to the 
redundant moment M at the fixed end A. The value of M actually acting is, of 
course, not known, 



Example 14.6-2. A propped uniform cantilever is 
to be designed to support the loads in Fig. 14.6-
6(a). Explain how the lower bound theorem 
(Static Theorem) may be used to select a value of 
the plastic moment of resistance, Mp, which will 
guarantee that the beam will not collapse under 
the loading. 

SOLUTION Fig. 14.6-6(b), (c) and (d) show three 
bending moment diagrams which are in 
equilibrium with the external loads P and 2P. 
These are discussed in turn: 
Fig. 14.6-6(b)): The bending moment diagram is 
obtained by superposition of the simple-beam 
moment diagram a1c2d2b on to the diagram a1a2b 
due to the redundant moment M at the fixed 
end A. The value of M actually acting is, not 
known, but this presents no difficulties because 
the designer is at liberty to choose any value he 
considers appropriate. Suppose, he sets M at a 
value represented to scale by the ordinate ala2. 
The largest moment ordinate is then d1d2. Thus, 
provided the plastic moment of resistance Mp
exceeds d1d2 (= PL - M/4), the yield condition is 
satisfied and the lower bound theorem 






