Inelastic Analysis — Plastic
Analysis



* ELASTIC ANALYSIS IS VALID FOR

— Small Displacements &/or

— Linear material Properties i.e stress-strain
relationship remains linear

* NON-LINEAR PROBLEM

Geometrical Nonlinear Problem --- If the
displacements are not small i.e. large
displacements problems.

Material Nonlinear/Inelastic/Plastic Problem ---
the stress strain relationships of the material is
non-linear



— A Problem can be both Geometrically & Materially
Non-linear.

— Accordingly, in the literature the terminology like
* LARGE DISPLACEMENT & SMALL STRAIN PROBLEM,
* SMALL DISPLACEMENT & LARGE STRAIN PROBLEM
* LARGE STRIAN & LARGE DISPLACEMENT PROBLEMS
are mentioned.

* LARGE DISPLACEMENT& SMALL STRAIN PROBLEM

This deals with Geometrically Nonlinear problems. For
this category, strain-displacements relationships are
nonlinear but stress-strain relationships are linear.



* SMALL DISPLACEMENT & LARGE STRAIN PROBLEMS

 This is equivalent to Material Nonlinear Problems where
the large strain along with material nonlinearity is
governing criterion for Nonlinearity in the system

* LARGE STRIAN & LARGE DISPLACEMENT PROBLEMS

J Both material nonlinearty & nonlinear relationship of
strain and displacement is involved.



Linear and Nonlinear Structures —
Material Nonlinearity

— Different materials possesses different properties,
load resistance and deformation characteristics.
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* As the initial slope of the curve is different for
these materia

which = E is different

We Know that EI directly governs the
displacements of the Structure
* Linear Structure— when the stresses developed are
within Elastic Limit

* Non-linear Structure — Stresses developed are in the
plastic range or non-linear range.

* Several factors influence the stress-strain properties of
a material including the loading rate(load history) and
the duration of the load, environmental condition.



* Geometrical Nonlinearity— In addition to
material nonlinearity, some structures may
exhibit non-linear characteristics in its overall
behavior due to change in its shape under
loading by undergoing displacements by a
significant amount (large displacements) to
maintain its overall equilibrium.

Examples are

(i) deformation of cable structures
F

(ii)) deformation of Pole Vault

U=Deformation



For nonlinear problems

— No one to one correlation between stress (o) and
strain £ exists

— Not possible to express the stress-strain
relationship in terms of total stress and total
strain

And hence, for elastic-plastic materials, only a
unique incremental relationship between stress
and strain increments can be written and
expressed in terms of stress and deformation
history



e The strain
two parts

and the p!

C

C

Stress and strain increments

increment de is decomposed into

: the elastic strain increment de¢
astic strain increment deP i.e.

€ =de¢ + deP (1)
o =E de =E de* =E deP (2)



* Where do is the corresponding stress increment, E
the Youngo’s modulus, E;and E, the tangential
modulus and plastic modulus respectively. E, E,
and E, may be derived from an experimental

stress-strain curve under a monotonic loading
condition. As given below:

, E=rad
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from which, we obtain the relation E,  de J7
_L = i ! EL =% +El1; (4)
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E = P, E,= = (5)



* For a given elastic-plastic state, a stress

Increment or a strain increment may cause
PLASTIC LOADING or elastic UNLOADING.

* |n case of plastic loading, new plastic
deformation accumulates. In case of elastic
unloading, no new plastic deformation occurs.

* For obtaining the solution of an elastic-plastic
problem, the actual elastic-plastic material
behaviour must be idealised. For 1-D probles,
the elastic plastic behaviour can be
represented by idealised stress-strain relations
together with an assumed hradening rule.



PLASTIC ANALYSIS

Working stress method: is based on the working loads. At Working loads
the stress distribution (Both in steel & Conc) is assumed linear and
design is based on assuming the linear stress strain relationships

ensuring that the stresses both in conc. & steel do not exceed o at
service loads.

=service load/working load = ultimate or yield strength of material
factor of safety

Or factor of safety is the ratio of u/timate load and working or service
load

Service Load & Working loads are one and same
The load for which the structure is considered to be designed.



Elastic Theory
(1) Stress-strain relation assumed to be linear

(2) Structure fails if the stress at the maximum
stressed point reaches yield stress

(3) The service load is restricted to the value
such that corresponding to maximum
stressed point, the stress is equal to the
working stress

(4) i.e. the structure can take working loads.



* |n the elastic analysis it is assumed that the
structure would fail if the design load is
applied the factor of safety times.

* An elastic analysis of structure is important to
study the performances, especially with rgard
to serviceability, under the service loading for
which the structure is designed.

Disadvantages:

* Does not provide a uniform overload capacity
for all sections of members & hence the need

of ultimate strength theory emerged



* Plastic design is based on the philosophy of
failure of member or srtucture rather than

their condition at working stress or service
loads.
* A member is desighed employing the criteria

that the structure will fail at a load substantially
higher than the working or service loads.



INTRIDUCTION TO PLASTIC ANALYSIS

The stress-strain curve is linear between the origin
and the elastic limit, which is very close to the yield
point; After the upper yield point, there is a sudden
drop in stress to lower yield point. The designer
normally treats the lower yield point as the limit of

proportionality. From this yield point to the ultimate
stress point.
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* the zone is called strain
hardening zone. At ultimate
stress point, neck formation
starts and the load carrying
capacity reduces. Finally,
breaking takes place at stress
(normal stress) which is less
than the ultimate stress.



Rationale for Plastic Analysis

Now consider stresses across the highly stressed section of the simply
supported beam as load increases

* We take for example an arbitrary section shown in Fig. (a). For small
deformation, when the bending stresses are small and within the elastic
range, i.e., (0'< g, the stress distribution is linear across the section as in
stage | in F|g (b). In this case, the NA will pass through the centroid of the
section. As the moment is further increased, stresses in either of the
extreme fibres reach yield value shown in stage Il in Fig. (b), with NA still
passing through the centroid. The value of the moment corresponding to
this yield is called the yield moment, M, . As the moment increases
further, the bottom fibre also yields and y|eId|ng at top fibre progresses
mwardly shown in stage Ill in Fig. (b). In this case, the NA is shifted below
the centroidal axis to satisfy the equilibrium requirements and is
determined from the consideration of the total compressive force equal to
the total tensile force over the cross section.

¢ N

o v y y y
Stage I Sta, H Stage III  Stage IV Stage V
(a) Arbitrary section (b) Stress distribution at various stages of loading
Fio. 23.17 Bendine of beam.



 The yielding progresses inwardly from both top and bottom
fibres towards NA with further increase in moment shown
in stage IV in (b). When the load reaches its ultimate value,
the yield progresses right up to the NA and the entire
section becomes fully plastic as in stage V in Fig. (b). The
moment corresponding to this stage is called fully plastic
moment, M,,

* If we neglect the strain hardening in the outer fibres, there
cannot be any further increase in moment. Therefore, the
plastic moment represents the limiting strength of the
beam in bending. The NA in the case of fully plastic section
will pass through the axis of equal areas. If both axes of a
section are symmetrical, then the locations of NA in elastic
and fully plastic conditions remain unchanged.

 When the fully plastic moment is reached, the section will
act as a hinge permitting rotation. The yield will spread in
the longitudinal direction with further increase in load.



* Now, let us consider the load carrying capacity of a
fixed beam. As the bending moment is maximum at
supports, first extreme fibres at supports yield. For
further increase of load, entire section at supports
yields. Even at this stage, the structure will not
collapse, since a beam with two hinges at ends is a
stable structure. For further load, it acts as a simply
supported beam till all fibres at the mid-span section
yield.

Hence one can say that

* the elastic theory under estimates the load carrying
capacity of the structure. For indeterminate
structures, this under estimation is still high.

* not giving the correct idea about the load carrying
capacity of the structures.



PLASTIC MOMENT OF RESISTANCE

The moment of resistance developed by a fully plastic section is called the fully plastic moment, Mp.
For the evaluation of the fully plastic moment, we make the following assumptions:

The material is homogeneous and isotropic in the elastic as well as in the plastic states.
Hooke's law is applicable in the elastic stage of the material. In the plastic stage, the stress remains
constant.

The yield stress and the modulus of elasticity have the same values both in compression and in
tension.

Plane sections remain plane both before and after bending.
No resultant axial force exists on the beam.

Let us now consider a cross section of a beam shown in Fig.(a). We apply a fully plastic moment Mp of
sagging nature on the beam shown in (b). Due to the application of moment Mp every fibre of the
cross section is stressed to the yield level of g, and the corresponding stress distribution is
rectangular as in Fig. (c). The nature of stress in fibres above the NA is compressive and that below is
tensile. We denote the area of the upper portion of the cross section as A, and the distance of its CG
from the NA as y; shown in Figure (a). Similarly, we denote the area of the lower portion as A, and its

CG distance Y, . -0y >
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(a) Cross-section (b) Application of moment (c) Stress distribution at

plastic stage

Plastic moment of resistance.



* The compressive force acting on the upper portion of the cross section, C= g A, .The
tensile force acting on the lower portion, T = g, A, . From equilibrium con5|derat|on
C=Tie,ie o0/A=0,A; OrA=A,,

However, totalarea A=A/ +A,, A =A,=A/2.
* Therefore, the neutral axis (NA) divides the cross section into two equal parts.

* Asthe CG of compressive and tensile forces lie at a distance from the NA, they

would give rise to a couple which has to be equal to the externally applied moment,
M,. Therefore, taking moment about NA, we get 0, Ay, + 0,A; y,= Mp. We know A,
= A2 =A/2. So,

A
M, = 0’}-5 (v + v2) (1)
Mp — Uy S where S == (}-‘1 + y,) (2)
Equation (1), is the expression for the plastic moment of resistance of a section.

PLASTIC MODULUS

* InEq. (1), the quantity — (¥ + ¥2) is called the plastic section modulus.

It is the sum of the moments of areas of the compression and tension zones about
NA



Example 23.12 Rectangular scction

Determine the plastic section modulus of a rectangular
section shown in Fig. 23.19.

Solution The breadth of the section is b and depth d.
Area of upper zone is A, and lower zone 4,. Distance
of CG of A is y; and that of 4, is y,. However, it is
regular and symmetrical

d
W=y, =—; A=bd
A bd d: vd bd?
If »=150mm and d = 300 mm, then
150 X 3002 |
= = 33,75,000 mm?
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Fig. 23.19 Rectangular section.

(23.9)



Example 23.13 Triangular section

" Find the plastic modulus of a triangular section
shown in Fig. 23.20.

Solution The base width of the triangle 1s b and its
height is 4. Area of triangle, 4 = bh/2. Now, we have
to divide the triangle into two zones of equal areas. Let
us assume that the axis that divides the triangle into
equal areas lie at a distance of /; from the apex. The
width at that axis be b (Fig. 23.20). Then

by _1 b
2t 29
We know from Fig. 23.20 that
Hiae 4D by
el b1=L

" b h

e

" b 1

Fig.23.20 Triangular section.

(1)

(2)



Substituting Eq. (2) in Eq. (1), we get

bihyhy 1bh h
— . by =—= (3)
B3 232 \/2
Substituting Eq. (3) in Eq. (2), we get by = b/V2.
h,o
1

Now, y; = 3 = 3\/.2. =(0.235h (4)

h b
N — == 2D
(h—hl)x<b1+2b>_< \/g)x(\/f )

d - =
e 3 by +b 3 ( b )
—+b
2
(8—5V2)
C = = 0.155A
6
Therefore, plastic modulus
A 1.bh )
S=—= > % yz)———(O 235h + 0.155h) = 0.098bA (23.10)

If b=75mmand 2= 100mm, then S = 0.098 X 75 X 100 = 73,500 mm? .



Example 23 cular section

Determine the plastic modulus of a circular section of diameter d as shown in Fig. 23.21.

Solution

Area of circle = %dz.

We know that tﬁe CG of the semicircle from

NA = 2d/3w.
2d

N=r2= 377

A
Plastic modulus S = 5 vy +,)

3
1 _d2<2d 2d>=d_

2 4 3w 3w 6
If the diameter of the circle is 125 mm, then
125"

5= e 3,25,520.83 mm?

S| 3—,”
y N A v
0 uby
T 3w
v v

Fig. 23.21 Circular section.

(23.11)



Example 23.

Determine the plastic modulus of the I section shown in Fig. 23.22.

Solution The given cross-section is symmetrical. Therefore, NA lies at centroid of the
section. We determine the plastic modulus of the section by taking moment of areas of
individual rectangles about NA.

d 0.1d d 1/d
=2005dX01dX|=-——"—=)+|=-0.1d )| X0.1dX=| =—0.1d
s=osaxotax (§-27) + (§-01a) xorax (5 -014)|

= 2[0.022543 + 0.0084°] = 0.061d°
If d = 450 mm, then S = 0.061 X 4503 = 55,58,625mm>.

[fe——0.5d —> Al
TTL 1 014
— 01a T

di2

fe——0.5d—]
Fig. 23.22 | section.



SHAPE FACTORS FOR VARIOUS SECTIONS

 We know, that the ratio of the moment of inertia about the NA of a
section to the distance of the extreme fibre is called the section

modulus, Z. Let the moment of inertia be I and the distance of

extreme fibre be y., Then

The bending moment M is given by M = ¢ Z. Also, the yield moment M,, i.e., the

moment at which the first yield occurs, with the section still rema.ining elastic is

given by M, = o Z. The plastic moment from Eq. (2) is M p=05.

The ratio of plastic moment to the yield moment is called the shape factor, 1
MP O'}.,S S

- S 3
! M, o7 Z (3)

y

From this, it is clear that the shape factor also refers to the ratio of plastic mod-
ulus S to the section modulus Z. The shape factor is the property of a section and
solely depends on the shape of the cross section. We now evaluate the shape factor
for some well-known sections.



Solution The moment of inertia of the section
1

I1=——bd
| 12
The distance of extreme fibre is
o d
Ye =™ 5
I 1 2 1
Section modulus, Z = — = — bd®> X = = — bd?
y, 12 d 6
From Example 23.12, plastic section modulus of rectangular section,
4

.. Shape factor, 1 = S/Z = (1/4)bd? X 6/(bd*) = 1.5



g @ SN o T A

Evaluate the shape factor of a triangular section with base width b and height h.

. . : bh3
Solution The moment of inertia about centroidal axis, / = _?E

Distance of extreme fibre from the centroid, y A 3 h

I b 3  bh2

The section modulus, Z = = =36 13 Y

We know from Example 23.13, plastic section modulus of triangular section is
S = 0.098 bh?.

2
_ 0.098bh — 134

(5)

S
.". Shape factor, n = >



Find the shape factor of a circular section of diameter, d.

Solution The moment of inertia of the section is

P
64
Distance of extreme fibre from centroid
d
Y™ '2‘
wd* 2 wd’
.. Secti dulus, Z=—X—-=——
ection modulus 4 3" 3
We know from Example 23.14, the plastic section modulus of the circular section is
d3
S=—
6
S & 32
.". Shape factor, i =7 7 X y = 1.7



Find the shape factor for a hollow circular section with inner diameter d and outer diam-
eter D shown in Fig. 23.23.

Solution

: : d
Let the diameter ratio be y = B

_f
d
k2

Moment of inertia, / = % (D* - a4

D
Distance of extreme fibre, y = —
1stan extreme fibre, y, 5 p b .
. Section modulus, z = 614 (D* — &%) X - Hollqw circular section

e VO SRR 4 T G 4
32D[D (yD)] 32D(1 YY)



We know from Example 23.14, plastic section modulus of a solid circular section is S = d°/6.
Using this, we get for hollow circular section

D & D (yDy D3

= — f ooy
=T @ RN U
S D3 32 1
.. Shape factor, n = —=— (1 — y3) X X
p =g =g W r) 2D (1=
161 =)
T (1 —y%
13
:1.7( 74)
(I =99
[fd =50mm and D =75mm, y = (50/75) = 0.67.
(1 —0.67°)
Then, n=1.7 = 1.49

(1—067%



Determine the shape factor of the I section shown in Fig. 23.24.

le—120mm — 1

e | | 10mm
E— == 15mm_T_
500mm
x--1-- T ————————————— R %
y=215.27mm 4
v | | 20mm

le—150mm ———>]

Fig. 23.24 Unsymmetrical | section.

Solution The given section is unsymmetrical. So, we have to determine the CG of the sec-
tion. We take the base as reference and determine the distance of the CG from the base is

150 X 20X 10 + 470 X 15 X 255 + 120 X 10 X 495

i 150 X 20 + 470 X 15 + 120 X 10
_ 30000 + 1797750 + 594000 _ 2421750 _ , .,
3000 + 7050 + 1200 11250 S
1 : 1
L, =75 X 150 % 20>+ 150 X200 X205.27 T 4703 %< 15

1 1
+EX 470 X 15 X 39.7 +EX 120X 103+ 120 X 10 X 279732

= 100000 + 126407318.7 + 8651916.67 + 927352.83 + 10000 + 93898647.48
= 229905235.7 mm*
= 500 — 215.27 = 284.73 mm.

I 229905235.7
VYmax  284.73

Area of the section is 11250 mm?.

ymax

zZ= = 929661.78 mm?




We know that the NA corresponding to plastic section modulus divides the cross-section
into two equal areas. Let the distances of the plastic NA from the top and bottom edges be
yy and y,. Area of compression zone = area of tension zone

11250
= 5625 mm?

or 150 X 20 + 15 X (y, — 20) = 5625
y,=195mm and y =500-195= 305 mm

Plastic section modulus,
S=120X10(305-5)+15X295 X 1475+ 15 X175 X 87.5+ 150 X 20 X 185

— 360000 + 652687.5 + 229687.5 + 555000 = 1797374.5 mm?

S 17973745
=1.93

TG T e b B
ape 1aclor = 2 = 929661.78




23.8 LOAD FACTOR
eAratloof the collapse load to the working load or service load is called the

7’f= | (4)

and W is the .

It represents the margin of safety with respect to the ultimate collapse load,
o onnects the working load directly with the collapse load which

By selecting an approprlat _- actory
collapse to an acceptable low value Tts value depends on the nature of loading,
boundary conditions, and cross section of the element.



We assume here the maximum bending moment corresponding to WOIKING
load W be _Similarly, fully plastic moment corresponding to collapse load
w,be M P.Mbending moment at a givgn section is directly propor-
tional to load. The >V < W or M = BW. For[example, in the case of sim-
ply supported beam, M, .. = WL/4 and hence B = L/4. Tikewise, Mp X Wp or
Mp= — Now, Mp/M,ax = Vs We know that elastic section modu-
lus, Z=M .. /0 where o 18 the allowable stress in bending. The plastic sec-
tion modulus, S =M P/ay

_S_:MP;M MP Ty,

max
7 L W (a)
o, Ch max 7y
M S
However, F Vs and —=m
max Z

and (oy,/07p) = 7y, = factor of safety in elastic method.
From these quantities, we can rewrite Eq. (a) as

s
n e, S——
Vs
or V=M XY (%)

Equation (5 ) shows that the load factor is equal to the shape factor multi-
plied by the factor of safety used in elastic design.



* LOAD FACTOR

* SHAPE FACTOR

* PLASTIC SECTION MODULUS

* FACTOR OF SAFETY (IN ELASTIC METHOD)

?oad actori.c., )

where o, is the allowable stress in bending



MOMENT-CURVATURE RELATIONSHIP

We know that curvature is the relative
rotation of two sections separated by unit distance. Let us

consider sections ab and cd shown in Fig. 1  sepa- '
rated by a distance dx. They rotate by an angle d6 as in ' !
Fig. 1 .Then >——v’ d
¥ g
dx ed 1 L
P2 . Tds \do;
p p '
Now, we denote _l_ = ¢ 1/p=@ is the curvature of the NA 0O——
| & 3 o Fig. 1  Curvature.
So, ¢ =— (6 )
p vy By
Now, let us consider a rectangular section. If d) is the
curvature of the beam at the first yield, then G Sl Rt
&
y
¢, = r

A
Rp
(a) Simple straight beam (b) Bent beam



While the beam bends under the load, as shown in Fig. 3.39, the top fibre ac is
shortened and the bottom fibre bd is lengthened. Somewhere in between the top
and the bottom of the beam, there is a layer of fibres, indicated as ef in Fig.
3.39(b), which remain unchanged in length. This is called the neutral surface.
The intersection of this neutral surface with the axial plane of symmetry is called
the neutral axis of the beam. Its intersection with the plane of any cross section
is called the neurral axis of that section. After deformation, the planes of two
adjacent cross sections ab and cd intersect at O. The angle between these planes
is denoted by d@ which is expressed as df = dx/p where 1/p is the curvature of
the neutral axis of the beam.

If a line ¢’d’ is drawn through f parallel to ab, then it is clear that fibre ac is
shortened by an amount cc’ and is in compression, and that fibre bd is length-
ened by an amount d'd and is in tension. Line ¢’d’ indicates the original orienta-
tion of the cross section cd before bending. The deformation of a typical fibre g/
located at a distance y from the neutral surface is now considered. Its elongation
hk is the arc of a circle of radius y subtended by the angle 46 and is given by

& = hk = ydo (a)

The strain is found by dividing the deformation by the original length ef of the fibre:
S vdb ‘

e o

With the radius of curvature of neutral surface being p, as stated above, the
curved length ef is equal to pdf@; whence the strain becomes
pd6  p

If a fibre on the concave side of the neutral surface is considered, the distance y
will be negative and the strain is also negative. Thus, all fibres on the convex side
of the neutral surface are in tension while those on the concave side are in com-
pression. Experiments indicate that the longitudinal deformation of fibres is the
same as in simple tension and compression.

Assuming that the material is homogeneous and obeys Hooke’s law (assump-
tion 5), the stress in fibre gZ is given by

o=cE = (—E—>y (3-8)
o)



In case the beam is partially plasticized then the distribution is shown in Fig. 2
In this case, the middle layer on both sides of N4 remains elastic and this
layer is known as the glastic core. The distance of the farthest fibre which is still

elastic is y, shown in Fig. 2.
fully plasticized. We say the
elastic strain is £_,. Then,

l—t b —>

Yielded

| G

Yielded

Beyond this up to outer fibre the section has

kection is in elasto-plastic stage. The maximum

(a)

€ max o

y .
Sitaiti stress at fust yield

Fig. 2. Partially plasticized section.

The total moment of resistance is combination of the moment A/, resisted by the
elastic core and the moment M, resisted by the plastified fibres in the extreme
region of the section. Therefore,



b2y, 2

M; = o, - 3 y(byo)z (b)
and M, =o [éj—z e (2y0)2] - O'y[%di =i 0] (b")
So, total moment, M = M, + M,
‘;'(Tyby0+a [———byg] (c)
_O-yg)j—z-l-o-y{%byg—byg} o -b—ji—ay%
:ayb%?[g— zjﬂ (d)

We know My = O'ybd 2/6. Substituting in Eq. (d), we get
3 205
=32 Lo
Substituting Eq. (a) in Eq. ( 6 ), we get



Equation ( 7 ) gives the moment curvature relationship in the elasto-plastic
stage for rectangular section.
The moment curvature relation in the elastic stage is given by

M_e_¢ (8 )
M, ¢ &, |

We can show the moment curvature relationship for a rectangular section as per
Eqs( 7 )and( 8 )inFig. 3

It can be observed from Fig. 3  that the M—¢ relationship is linear in the
elastic range and curvilinear in the plastic range. The M—¢ curve becomes

M
‘MBT M,
1.5

1.0 f----- (1) 7 7
i N

M_ b/
M, b,

(1) (2) (3)

O 1.0 b
by

Fig. 3 Non-dimensional M—¢ curve for rectangular section.



asymptotic to the horizontal line shown dotted corresponding to M/M, = 1.5,
i.e., when M reaches the value of M),

The moment—curvature relationship is an important aspect of plastic analysis.
In an unloaded beam the curvature is zero. As we increase the load on the beam
correspondingly the moment increases as a result of which its curvature also
increases linearly up to the point (1) in Fig. 3. From point 0 to point (1), it
is called elastic range. With the yielding of fibre in the section at yield moment
M, the linear relationship ceases. With further increase m moment, the curva-
ture increases at a faster rate indicating that the yield spreads into other fibres
inside the depth of the section. As the moment attains the fully plastic value, cur-
vature tends to infinity. This indicates that the section is fully plasticized. When
at a particular section along the length of the beam, moment reaches the value
of Mp. whereas the value of the moment at other sections on either side of it still
remains lower than Mp. At a fully plasticized section, the curvature becomes
infinitely large. Therefore, a finite change of slope can occur over an infinitely
small length of the member at this plastified section. So, the member will rotate
about this plastified section as though a hinge has been inserted there.



EFFECT OF AXTIAL LOAD ON PLASTIC MOMENT

Consider a rectangular beam whose cross-section is shown in Figure (a)
below. The beam is under the action of combined effect of axial thrust
and the bending moment. Let the section be fully plastic under this
combined effect of axial force P and a bending moment M,

In the figure, the areas yielding in compression are shaded while the
areas under tension are hollow. The gross cross-section may be
considered as made up of areas as shown in Figure (b) & (c). The
resultant of the stresses acting on the area in Figure (b) is equal to the
applied axial load .

. b —= h1/2+H(1/2(h-hl1)/2] p— b —i
¥ % T S equale  § 0N o ] le-mn
= i area axis g o B g, compression
h % -EW:.::.;?.:'.'5..‘5,;:1 *’ \ g“.':. - e
B ;,:5;,25_;;?_}S;;r,i oy hl..-%+[(_1.-l(_11-111 )/2]
i e *--ﬂL—\ 3 I P I{h—h,);’

7, tension ““&‘}‘;“I 0, compression J, tension
P+M, = P - M,
(a) (b) (c)

Kig. [(a) = (b) + (¢))



In the figure, the areas yielding in compression are shaded while the
areas under tension are hollow. The gross cross-section bx h may be
considered as made up of areas as shown in Figure (b) & (c). The
resultant of the stresses acting on the area in Figure (b) is equal to the

applied axial load P.
P =a,bhy

=nk, (1)
Where F, = g, bh is called the squash load of the section. We know the

ratio £ is called the squash load ratio and is usually denoted by n. For

E, h
a rectangular section, n = f , as shown by Equation (1).

For the beam shown in Figure (a) above, under the combined action of
axial force P acting through the Plastic NA of the section of Figure (b)
and an applied bending moment M}, the shaded section shown 1n Fig (b)
shall be under pure compression, the and hence cause no FLXURE.



The resultant of the stresses acting on the areas as shown in Fig
(c) shall only be contributed by Fig (¢), 1s a couple equal to the
applied plastic moment M,;',. From the Figure (a), (b) & (c) above,
we can write

1
Mp = 2x{a,x bx[(h—hy)/2]} x {(hl/z) +5X ((h— hl)/z)}
On simplitying, we get

, bh? bhi
Mp =0, X 2 % X 2
or Mp=Mp— n®Mp (2)

Where M, is the plastic moment of the section in the presence
of axial load B, and M 1s the plastic moment in pure bending.
Dividing Eqn (2) by g,

Zp=Zp— n*Z, 3)

Where £ L, plastic section modulus in the presence of axial &



Zp that in pure bending. Eqn. (2) shows that the plastic moment of a
rectangular section 1s always reduced by the presence of axial load
acting in the plane of equal area axis. It should also be noted that Eqn.
(1) 1s true 1rrespective of whether the load 1s compressive or tensile.

For a mono-symmetrical section, such as a T section, we have to define care-
fully the term axial load. If an gxial load is defined as one acting in the plane of the
equal-area axis, it is clear from the analysis in Fig. below that an axial load will always
reduce the plastic moment, by an amount equal to ¢, x [Z, of area in Fig. (b)l.

‘0, compression

&, compression

Cqual area axis “"'"""—'":'::'::';:':'.':‘

—

—

] b —— s
‘- centroid

G, tension
P+ M, = /g + M,
(a) (b) ()

Fig. [(a) = (b) + ()]



If an axial load is defined as one acting through the centroid of the section,
then it is effectively equal to a LQad_asLingimhejﬁ_ane of the equal-area axis plus an
additional bending moment Pe, where e is the egcentricity of the centroid from the
equal-art axis. If the sign of this additional mqment is favourable then the plastic
moment [nay appear to increase; this increase is, |of course, purely illusery.

PIastuie,r - P N-=-A

> These two forces forming
a couple M= Pxe




Collapse Load and Collapse Mechanism
The load Carrying capacity of any frame or beam depends only on
the value of Plastic Moment of Resistance Mp.

In the plastic analysis, 1t 1s assumed the elastic deformations are
small and that the behaviour 1s Perfectly Plastic or Rigid-Plastic.

1"19 T JWL
M M
Fig. 14.6-1 > S
¢ ¢
(a) Elastic-plastic (b)Rigid-plastic

In all further discussions, unless otherwise specified, we shall
assume a rigid-plastic moment curvature relationship. It is also
assumed that the effect of axial and shear deformation are very
small and hence considered negligible.



EXAMPLE:

As a first example of the determination of the
collapse load of a structure by plastic analysis,
consider the two-span beam in Fig. 14.6-2(a),
having a uniform cross section of plastic moment of
resistance M,. The beam supports a working load P,
which is sufficiently low for stresses everywhere to
be within the elastic range. The bending moment
diagram is as in Fig. 14.6-2(b). As the load P is
progressively increased to say BP, the bending
moment at section D reaches M, and a plastic hinge
forms there, as shown in Fig. 14.6-2(c). The beam is
originally statically indeterminate and has one
redundancy, but the formation of a plastic hinge
removes that redundancy so that the beam in Fig.
14.6-2(c) is statically determinate. The bending
moment diagram is now represented by abdc in Fig.
14.6-2(d). As the load is further increased, the
bending moment at D remains constant at the full
plastic value M,, while that at B continues to grow
until eventually, at a load of say AP, the moment at
B also reaches M,

To determine the collapse load
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The bending moment diagram is now ab'dc in Fig. 14.6-2(d), and there are two plastic
hinges - at B and at D. Reference to the moment-curvature curve in Fig. 14.6-1(b) shows
that the beam now undergoes unrestrained rotation at B and D; in other words, the
structure has become a mechanism. The load AP at which the structure collapses as a
mechanism is called the collapse load or the ultimate load and the factor A which is
the ratio of the collapse load to the working load, is called the collapse load factor, or
simply the load factor. The collapse load, and hence the load factor, can easily be
determined from Fig. 14.6-2(e). Consider a plastic hinge rotation ¢ at B; then from the
geometry of Fig. 14.6-2(e), that at hinge D must be 2¢.

Therefore
Work done by load = AP($L/2)
Work dissipated in the hinges = M,¢ + M, (2¢)

= 3M ¢
' _ . . (Using principle
Hence the wu: & equation (sometimes called the collapse equation) 1s of Virtual work)

APSL[2 = 3M ¢ (14.6-1)
therefore AP = 6M /L
A= 6M,/PL

This method of solution is called work method or mechanism method wherein the
collapse mechanism is identified and the collapse load is then obtained from the

work eqn.



METHOD OF PLASTIC ANALYSIS

(1) Work Method or Mechanism Method or Virtula Work Method
(2) Statical Method or Graphical Method (Lower Bound Theorem)
(3) Uniqueness Theorem

(4) Kinematic Method (Upper Bound Theorem)

(1) Work Method or Mechanism Method : Already discussed

(2) Statical Method:

In this method, the redundant moments are selected and the bending
moment diagram is constructed by superimposing the free moment-
diagram on to the redundant-moment diagram in such a way that the
mechanism is formed — the value of the collapse load is then calculated
from statics.

Example: Consider again the beam of Fig. 14.6-2 (a)



(2) Statical Method: or Lower Bound Theorem.

It states that ‘if a distribution of bending moments can be found such that the
structure is in equilibrium under the external loading and such that nowhere is
the plastic moment of resistance M, exceeded, then the structure will not
collapse under that loading-however 'unlikely' that distribution of moments may
appear. The theorem is often referred to as the safe theorem. (The proof of this
theorem will be given in Section 14.9).

In this method, the redundant moments are selected and the bending moment
diagram is constructed by superimposing the free moment-diagram on to the
redundant-moment diagram in such a way that the mechanism is formed  the
value of the collapse load is then calculated from statics.

Example: Consider again the beam of Fig. 14.6-2 (a)
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Example: )

As an example, consider again the beam in ) Pl L
Fig. 14.6-2(a)- the collapse mechanism of /AN 4% D oY
Fig. 14.6-2(e) is redrawn in Fig. 14.6-3(a). @ = ' i ‘ L
Suppose the continuity moment at the Spp—
. . . f
intermediate support B is selected as the 0-203?‘1!»
redundant, then the bending moment e T

diagram may be sketched as in Fig. 14.6-

3(b), in which ab,c is the redundant-

moment diagram, and b,d,c is the free

moment diagram due to the load AP acting

on the simple span BC. If the magnitude of

b;b, is so chosen that b;b, = d;d, = M,, then

the beam will collapse in the mechanism of

Fig. 14.6-3(a). From the geometry of Fig. @
14.6-3(b):

A
(a)
}4 3 (e)
Fig. 14-6-2
= >d.d, = APL/4 — b,b,/2
That is M, — APL/4 — M,J2

S :.:;vb; ¢ Therefore AP . 6MP/L agreeing with Eqn 14.6-1.

Fig. 14-6-3



Necessary conditions for determination of collapse load
The following conditions are must to be satisfied to have collapse of the
structure. : c

(1) the Mechanism Condition M

(2) the equilibrium condition & 1 |

(3) the yield condition ,, y & B

With reference to the Fig. 14.6-3,
The Mechanism Condition is satisfied i.e. sufficient (in this case=2) no. of plastic
hinges have formed to convert the structure into mechanism.

The equilibrium condition is satisfied (ref. Fig 14.6-3(b)) where the bending
moment distribution is in equilibrium with AP (meaning that the BM induced by
AP satisfy 2M=0 at the locations of Plastic hinges (i.e. at points B and D)).

The yield condition is meant the condition that the bending moment (ref. Fig
14.6-3(b)) nowhere exceeds Plastic moment of resistance M,. (implies nowhere,
the ordinate of BMD(shaded) exceeds M,,).



These three conditions are necessary and sufficient for the
determination of the collapse load factor of a structure.

(3) Uniqueness Theorem: It sates that if a bending moment
distribution can be found which satisfies the three conditions
of Mechanism, equilibrium and yield --- then the load which
correspond to such a moment distribution will be true
collapse load.



Example 14.6-1. The propped uniform cantilever in Fig. 14.6-4(a) is of plastic moment
M,. Determine the valué of P at collapse using (a) the work method (b) the statical method.

P 2P
. P R
N C D ;g
WA
L L /2 L /'!2
» P RSt T Pt s

Fig. 14.6-4(a)

Solution:
(a) Using The Work Method (or the Virtual Work Method)
There are three possible collapse Mechanism as shown in Figs. 14.6 (b), (c) and (d).

Finding out the collapse load for each of these Mechanisms as shown below.



There are three critical sections where BMs
could be maximum viz. Fixed support, below
point load P and below point load 2P. Further,
we know that I=1 and hence 02 hinges are
sufficient to convert it into MECHANISM. Now
examining all the three possible mechanisms. It
is observed that the one in Fig. 14.6-4(b) gives
the lowest collapse load. This means that as the
magnitude of P is gradually increased from zero,
the collapse mechanism in Fig. 14.6-4(b) will be
the first to form (correspond to lowest load),
when P reaches 5M,/4L.

The other two mechanisms cannot form unless
this one is prevented from forming, for example
by strengthening the cross sections at points
where hinges would have formed. We therefore
conclude that P = 5M,/4L is the correct collapse
value as the first mechanism at the lowest load
will cause the collapse of the structure and the
other two mechanism will not be forming.

AN

r,')/,;
Fig. 14-6—4(b)

The work equation is

P(pL) + 2P(34L[2) = M,p + M ,(4¢)
Therefore P = 5M,/AL

oL
Fig. 14-6—4 (¢)

P($L) + 2P($L[2) = M4 + M,(2¢)
Therefore P =3M,2L

Fig. 14-6-4(d)

2P($L[2) = M,¢ + M, (2)

Therefore

P — 3M,/L



(b) Using the Statical Method:

Figs. 14.6-4(e), (f) and (g) show three bending moment
diagrams. Each diagram has been so drawn that the moment
ordinate is exactly equal to the plastic moment M, at two
sections. In Figs. (e) and (f), a; a, b is the moment diagram
due to the redundant moment M, at A, and a;c,d b is the
simple-span moment diagram due to the external loads P and
2P,

In Fig. (g) the moment M, at section C has been selected as
the redundant; that is, the triangle a;a,c,bc;a; is the
redundant moment diagram (The reader should verify this.
Hint: the moment Mp at C produces shear forces.), and
a,a;c,d,b is the moment diagram for the loads P and 2P acting
on the beam with a hinge at C. The collapse values of P can
be calculated from the geometry of the three bending
moment diagrams.

The three values for P obtained by the statical method agree
with those obtained by the work method. As before, we
conclude that the lowest value, namely P = SM,/4L, is the
correct one.

Fig. 14-6-4(e)

dd, = PL — aa,/4
T! _refore M, =PL— My4
or ) o = 5M,/4L

This ordinate >Mp

Fig. 14-6-4(f)
cic; = PL — aya,/2
M, =PL— M,2
Therefore P = 3M,/2L

sagging moment

as

This ordinate >Mp

Fig. 14-6-4(g) )
did, = PL[2 — ¢,¢,/2
M, =PL]2—-M,]2

Therefore P = 3M,/L
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COMMENTS

In the statical method above, we need not have calculated
the collapse value of P for all the three bending moment
diagrams. A closer examination will immediately reveal that
both Figs. 14.6-4(f) and (g) violate the yield condition. In Fig.
14.6-4(f), the moment ordinate d;d, exceeds M, which
means that the collapse mechanism in Fig. 14.6-4(c) cannot
occur unless plastic hinge formation is prevented at D by
strengthening the cross section there. Similarly, in Fig. 14.6-
4(g), a, a; exceeds M,; again, the mechanism in Fig. 14.6-4(d)
cannot occur unless plastic hinge formation at A s
deliberately prevented. The bending moment diagram in Fig.
14.6-4(e), on the other hand, satisfies the three conditions of
mechanism (with plastic hinges at A and D), equilibrium (by
the manner of its construction) and vyield (since moment
ordinates nowhere exceed M,). Therefore we can at once
conclude from the uniqueness theorem that the
corresponding collapse load is the correct one; there is in fact
no need to consider any other mechanisms.

Fig. 14-6-4(e)

dd, = PL — aa,/4
T! _refore M, = PL — M,/4
or P =5M,AL

This ordinate >Mp

Fig. 14-6-4(f)
cc; = PL — aa,/2
M, =PL— M,2
Therefore P = 3M,/2L

sagging moment

as

This ordinate >Mp

Fig. 14-6-4(g) )
did, = PL[2 — ¢,¢,/2
M, =PL2-M,2
Therefore P = 3M,/L



(4) Upper Bound Theorem: (Also called as Kinematic Theorm)

It states that ‘for a given structure subjected to a given loading, the magnitude
of the loading which is found to correspond to any assumed collapse mechanism
must be either greater than or equal to, but cannot be less than, the true
collapse load'.

Therefore, in an analysis we simply compute the collapse load for each possible

mechanism and accept the lowest value as the correct one, as we did
in the work method above.

In this method, number of possible mechanisms are studied. A statical check is
applied by ensuring that the moment ordinate nowhere exceeds the plastic
moment M, for each mechanism correspond to collapse bending Moment
Diagram.

If the moment ordinate nowhere exceeds the plastic moment M, then the
uniqueness theorem guarantees that this mechanism will give the true collapse
load.

If M, is exceeded somewhere, then the yield condition is not satisfied, and the
search for a correct collapse mechanism must continue.



The upper bound theorem is often referred to as the unsafe theorem, because, interpreted
in a design sense, it states that the value of the plastic moment M, obtained on the basis of
an arbitrarily assumed collapse mechanism is smaller than, or at best equal to, that actually
required.

Example 14.6-2. A propped uniform cantilever is to be designed to support the
loads in Fig. 14.6-6(a). Explain how the lower bound theorem may be used to
select a value of the plastic moment of resistance, Mp, which will guarantee that
the beam will not collapse under the loading.

SOLUTION Fig. 14.6-6(b), (c) and (d) show three bending moment diagrams which
are in equilibrium with the external loads P and 2P. These are discussed in turn:
Fig. 14.6-6(1)): The bending moment diagram is obtained by superposition of the
simple-beam moment diagram a,c,d,b on to the diagram ala2b due to the
redundant moment M at the fixed end A. The value of M actually acting is, of
course, not known,



Example 14.6-2. A propped uniform cantilever is A
to be designed to support the loads in Fig. 14.6-
6(a). Explain how the lower bound theorem
(Static Theorem) may be used to select a value of
the plastic moment of resistance, Mp, which will
guarantee that the beam will not collapse under
the loading.

SOLUTION Fig. 14.6-6(b), (c) and (d) show three
bending moment diagrams which are in
equilibrium with the external loads P and 2P.

._.Q ].‘; i_»]wm

(M, = d,d, = PL — M|4)
®)

These are discussed in turn:

Fig. 14.6-6(b)): The bending moment diagram is
obtained by superposition of the simple-beam
moment diagram a;c,d,b on to the diagram a;a,b
due to the redundant moment M at the fixed
end A. The value of M actually acting is, not
known, but this presents no difficulties because
the designer is at liberty to choose any value he
considers appropriate. Suppose, he sets M at a
value represented to scale by the ordinate ga,. (M, = c\c, = PL + MP)
The largest moment ordinate is then d;d,. Thus, Fig. 14-6-6 ?
provided the plastic moment of resistance M,

exceeds d.d- (= PL - M/4) the vield condition is










