

Facilities and Technical Support

1: Adequate and well-equipped laboratories, and technical manpower.

The laboratory setup in the Electronics department is comprehensive and fully equipped to support a wide range of technical disciplines. Each lab is furnished with modern instruments and tools, ensuring that students have access to the latest technologies for practical learning. From Electronic devices, communication engineering, to the design software, every lab is designed to foster innovation and hands-on experimentation. High-quality workstations, simulation software, and industry-standard equipment are available to help students conduct experiments, research, and projects with precision. The labs are continually updated to meet the evolving needs of the engineering field, offering a conducive environment for academic growth and technical expertise. Below is the list of available labs in our department:

	tory	setup	ant	tatus vhich the	Technical Manpowe r support		
Sr. No.	Name of the Laboratory	No. of students per setup (Batch Size)	Name of the Important equipment	Weekly utilization status (all the courses for which the lab is utilized)	Name of the technical staff	Designation	Qualification
1	Analog Electronics-I Lab	25	AE Kits	Three days	Mr. Tariq Hussain	T.A.	Diploma E&C
2	Logic Design Lab	25	Digital Design Kits	Three days	Mr. Hanif Khan	S.T.A	B.E. (E&C)
3	Circuit Simulation Lab	25	SPICE Simulator	Three days	Mr. Hanif Khan / Mr. Abdul Sadir	Lab Atten dant	B.E. (E&C)/ Matric
4	Instrumentation Lab	25	1. LVDT systems.	Three days	Mr. Asif Shafi	Techn ician	Inter

	WII AU		Department of				<u>aa.</u>
			 Advanced temperature sensors. Potentiometer error measuring system. Light intensity detection system. Pressure sensors. Strain gauge sensors. 				
5	Digital Circuits Lab	25	Digital Design Kits	Three days	Mr. Tariq Hussain	T.A.	Diploma E&C
6	VLSI Lab	25	XILINX, TCAD Simulators (Silvaco, Sentaurus), 20 Computers	Three days	Mr. Hanif Khan	S.T.A	B.E (E&C)
7	AE-II Lab	25	Basic Analog Circuitry/Breadboards/ Kits	Three days	Mr. M Usman	Lab Atten dant	M.Tech. (E&C)
8	Communication Lab	25	 1. Basic AM/FM trainer kits. 2. Satellite Communication Trainers. 3. Wireless spectrum analyzer 4. CDMA DSSS trainer Kit. 5. Matlab. 6. Qualnet software. 7. ANSYS tools 	Three days	Mr Tariq hussian	T.A.	Diploma E&C
9	DSP Lab	25	Computers loaded with MATLAB, DSP Kits	Three days	Mr Khalid Khan	Lab. Atten dant	DIPLO MA/BE PERSUI NG
10	Microprocessor Lab	25	8051, ARM Kits, Raspberry Pie Pic Daughter Board, Avr Board, Universal Base Board, Xilinx Spartan Kits	Three days	Mr. Haneef Khan	STA	BE (E&C)

								<u>aa.</u> *
ſ	11	Microwave Lab	25	Microwave Benches	Three days	Mr M	Lab	M. Tech
						Usman	Atten	(E&C)
							dant	
								İ

Table B.6.1

Figure 1: VLSI Lab

Figure 2: Communication Engineering Lab (& Digital Circuits lab)

Figure 3: Instrumentation and Sensor Lab

Figure 4: Analog electronics Lab1 (& Microwave Lab)

Figure 5: Analog electronics Lab2

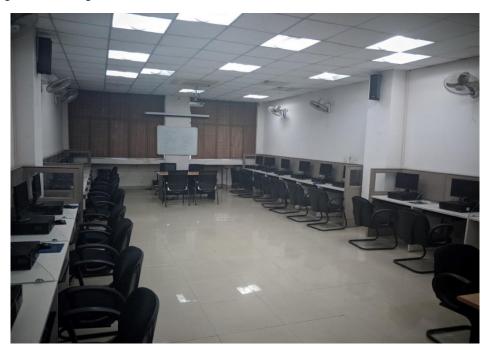


Figure 6: Electronic Design Automation Lab (Circuit Simulation Lab) (DSP lab)

Figure 7: Avionic's lab

Figure 8: Microprocessor lab & Logic Design Lab

Figure 9: Optoelectronics and Optical Communication lab

2. Laboratories maintenance and overall ambience

(Self-Explanatory)

Our laboratories are meticulously maintained to ensure both functionality and safety, with careful oversight provided by the Faculty Incharge labs and dedicated lab technicians. Each day, the labs are cleaned by sweepers to maintain a hygienic environment, while the tools and equipment are routinely checked to ensure they are in working order before each session begins. This proactive approach includes frequent inspections of electrical systems, such as electric boards, lighting, and heating points—to prevent potential hazards, including the risk of short-circuiting, which is a common cause of fires. Additionally, all computers and other equipment are properly shut down at the end of each lab session, and any unnecessary devices are disconnected from the power supply to minimize energy waste and avoid overheating. The air conditioning units are also switched off to conserve energy before the lab is vacated.

To ensure a pleasant and conducive atmosphere, computers, kits, and other equipment are cleaned regularly, and room fresheners are sprayed to enhance the lab environment. We also follow a robust Planned Preventive Maintenance (PPM) program, which involves servicing and checking all lab equipment during the summer break by our technical staff. This regular maintenance practice has greatly extended the lifespan and improved the efficiency of our equipment, contributing to a safer and more productive learning space.

3. Safety measures in laboratories

Sr.	Name of the Laboratory	Safety measures
No.	-	
1	VLSI Lab	Fire extinguishers, First Aid Kit
2	Microprocessors Lab	Fire extinguishers, First Aid Kit
3	Opto-electronics and Optical Communication Lab	Fire extinguishers, First Aid Kit
4	Analog Electronics Lab	Fire extinguishers, First Aid Kit
5	DSP lab	Fire extinguishers, First Aid Kit
6	Instrumentation Lab	Fire extinguishers, First Aid Kit
7	Digital Design Lab	Fire extinguishers, First Aid Kit
8	Communication Lab	Fire extinguishers, First Aid Kit
9	Microwave lab	Fire extinguishers, First Aid Kit
10	EDA Lab	Fire extinguishers, First Aid Kit

Table B.3

4. Project laboratory

(Facilities & Utilization)

At our institution, each of our laboratories is designed as a specialized project laboratory, focusing on specific research and project work in various domains of electronics and communication. Given the wide range of subfields within this discipline, it would be impractical to house all types of projects under one roof. However, to streamline access and facilitate comprehensive project development, our Electronics Design Automation (EDA) lab is equipped with a diverse suite of all the necessary software for circuit design, simulation, and testing, enabling them to tackle projects that span multiple areas of electronics.

Our department has invested in state-of-the-art laboratory equipment's, to enhance the learning experience and to provide students with hands-on exposure to the latest technologies. Some of the available simulation tools include SILVACO, Sentaurus, MATLAB, Optisystem, PSpice, Xilinx etc.

In addition to the well-established laboratories, there are a lot of new equipment and softwares purchased during the last three years to upgrade the existing labs and to encourage the students to dive more into the recent research areas. These new additions include advanced simulation softwares and high-precision instruments for measurement and testing. Additionally, specialized tools for device and circuit design and simulation have been incorporated to align with emerging industry trends and foster innovation. These new tools ensure that our students have access to cutting-edge resources, enabling them to gain practical skills and stay ahead in their respective fields. We've also upgraded our computer systems with high-performance workstations to support complex engineering applications.

Some of the recent purchases during the assessment year 2021-24 are listed below:

S.No.	Name of the equipment	Year of	Quantity	Amount	Type of
		purchase		sanctioned	Purchase
1.	Kit 1: IOT platforms TI-	2021	10	3,40,010/-	New Tool
	Launchpad (Texas instruments)				Research
					purpose
2.	Kit 2: IOT platforms Atmel	2021	10	3,29,700/-	New Tool
	Microcontroller				Research
					purpose
3.	A. VLSI design software for	2022	10	29,67,700/-	New Tool
	analog and digital design front		licenses		Research
	end and back end flow				purpose
	B. VLSI design simulation at		5		
	device level: Multiuser		licenses		
4.	Vivado ML enterprise	2022	25	2,21,500/-	Lab
	Edition, Vitis model Composer		licences		Upgradation
	Plugin, (HDL simulation tool)				VLSI lab

	· Ruiaus	Department o	Liection	ics & Comm	unication Engg.
	University Bundle of 25				
	licences				
5.	TUL PYNQ- Z2 Boards	2022	10	22,250/-	Lab
					Upgradation
6.	Pmod TMP3: Digital	2022	10	7000/-	Lab
	temperature sensor				Upgradation
7.	Pmod BT2: Bluetooth interface	2022	10	27000/-	Lab
					Upgradation
8.	Pmod WiFi: WiFi interface	2022	10	24000/-	Lab
	802.11g				Upgradation
9.	Pmod GPS: GPS receiver	2022	10	40,000/-	Lab
					Upgradation
10.	Analog pressure measurement	2023	2	78,000/-	Lab
	system Trainer Kit				Upgradation
11.	Angular displacement kit	2023	2	52,000/-	Lab
					Upgradation
12.	Strain gauge with cantilever	2023	2	30,000/-	Lab
	Trainer kit				Upgradation
13.	LVDT sensor kit	2023	1	12,000/-	Lab
					Upgradation
14.	Linear displacement	2023	1	20,000/-	Lab
	measurement using LDR				Upgradation
15.	Light intensity control system	2023	1	27,000/-	Lab
					Upgradation
16.	DC Servo Motor Position	2023	1	25,000/-	Lab
	Control Kit				Upgradation
17.	Desktop Computer System	2023	3+7	2,40,000/-	Lab
				+	Upgradation
				3,50,000/-	
18.	4 channel Laser source	2023	1	15,00,000/-	New Tool
					Research
					purpose
19.	Spectrophotometer	2024	1	6,00,000/-	New Tool
					Research
					purpose
20.	Laser Power meter	2024	1	5,00,000/-	New Tool
L	1				

					Research
					purpose
21.	Establishment of	2024		7,99,997/-	New Lab setup
	semiconductor devices and				
	chip fabrication lab				
	Desktop Computer System	2024	5	5,01, 500/-	Lab
22.					upgradation

A remarkable utilisation of these labs is evident from the quality of the work presented by our students in different sectors. Our B.Tech. Students regularly engage in hands-on project work across these labs, with many of their efforts resulting in innovative and novel solutions. Notably, several B.Tech. projects have led to high-impact journal publications, including contributions to esteemed SCI-indexed journals, book chapters, and leading conferences, with some also earning prestigious awards. The ongoing achievements of our students, reflected in the recent publications and accolades listed below, are a testament to the quality and significance of their work.

S.	Name of the	Title of the project	Type of	Project guide
No.	students		Publication	
1.	Dev Chadha (20BEC052)	Engineered gate-based nano scaled JK flip flop: Design, Simulation, and applications	Published in SCI listed journal "Nano: Brief reports and reviews" (2024)	Prof Sajad A Loan
2.	Fiza Moin (20BEC074)	Sensitivity Enhancement in U-Shaped Evanescent Wave Fiber Sensor	Published in SCI listed journal "IEEE Sensors" (2023)	Prof Mainuddin, Prof M.T. Beg
3.	Akram Afridi	Health monitoring systems	Awarded best healthcare project in "HACKJMI 2023"	Presented at JMI
4	Mudit Wadhwa (19BEC041), Prakhar Mishra (19BEC044) &Puneet Sharma (19BEC045)	New prime number counter: Design and performance analysis using CMOS and carbon nanotubes	Paper presented in the conference "International conference on nanotechnology: opportunities and challenges" Published as conference proceedings in springer materials (SPM,	Dr Imran Ahmed Khan

	Skeri Della	Department of Ele	ectronics & Comm	uniculion Engg.
			volume 28) (2023)	
5.	Owais Ahmad shah, Amrita Rai, Puneet Sharma (19BEC045), Prakhar Mishra (19BEC044) & Satvik Vats	Odd counter: New design and performance analysis using carbon nanotube transistors for high performance applications	Paper presented in "IEEE International conference on computational intelligence and sustainable Engg solutions (CISES). (2023)	Dr Imran Ahmed Khan
6.	Huzaif Malik, Mohammad Sarfaraz Alam and Shairin Meraj	Team name: Heckerpeeps Participated and winner of the Cyber security challenge KAVACH 2023, conducted by the ministry of home affairs and ministry of education, AICTE, BPR&D and Indian cyber- crime coordination centre.	Winner of KAVACH-2023	Presented JMI
7.	Mohammad Sarfaraz Alam	Generalized Frame Consistency video detection on latest T2Vs.	Participated in Viksit Bharat, for contributing ideas towards realizing the vision of Viksit Bharat by 2047.	Prof M T Beg
8.	Fiza Moin (20BEC074)	U-Bent Plastic Optical Fiber Sensor for Iron in Iron Supplements	Published in SCI listed journal "IEEE Sensors" (2022)	Prof Mainuddin, Prof M.T. Beg
9.	Akram Afridi	Team name: XLR8 Team id: 22020	Participation certificate in SAE northern India section EFFI-CYCLE 2022 hosted at Lovely Professional University, Punjab, November 2022.	Presented JMI