Name of the Scholar: Raquib Alam

Name of Supervisor: Dr. Rahisuddin

Name of the Department: Chemistry

Ph.D. thesis title: Synthesis, Characterization and Biological Evaluation

of Some Heterocyclic Analogues

Abstract

The thesis gives detailed account of synthesis, characterization and cytotoxicity evaluation of some pyrazole tethered heterocyclic analogues. All the synthesized compounds were characterized by detailed IR, ¹H NMR, ¹³C NMR, mass spectral data and elemental analysis. *In vitro* cytotoxicity of all these compounds were measured by MTT assay against a panel of three different human cancer cell lines and a normal cell line. Most of these compounds displayed moderate to good cytotoxicity against the tested cancer cell lines and weak toxicity towards normal cell.

A series of pyrazolic chalcones **4a-i** were synthesized, characterized and evaluated their cytotoxicity. Among these pyrazolic chalcones, analogues **4f**, **4g**, **4h** showed significant cytotoxicity against Caco-2, MIA PaCa-2, MCF-7 and NIH-3T3 cell lines as compared to standard drug etoposide. Compound **4g** exhibited superior cytotoxicity with IC50 value 15.32±0.62 against Caco-2 cancer cell line.

In an another study, some pyrazolyl pyrazoline derivatives **5a-i**, **6a-i**, **7a-i** were synthesized, characterized and evaluated their cytotoxicity. Compounds **5b**, **5f**, **5g**, **6b**, **6g**, **7f**, **7g** and **7i** showed significant cytotoxicity against a panel of three different human cancer cell lines (HeLa, NCI-H460, PC-3) and a normal cell line (NIH-3T3) as compared to standard drug etoposide. The compound **6g** displayed superior cytotoxicity with an IC50 value of **7**.98±1.08 µM for Hela cancer cell line.

In continuation, some pyrazolyl cyclohexenone derivatives **8a-i** were synthesized, characterized and evaluated their cytotoxicity. Among them, analogues **8c**, **8d**, **8f** and **8g** showed significant cytotoxicity against a panel of three different human cancer cell lines (MCF-7, NCI-H460, HeLa) and normal cell line (HEK-293T) as compared to standard drug Etoposide. Compound **8d** displayed superior cytotoxicity with an IC50 value of $7.01\pm0.60~\mu\text{M}$ for HeLa cancer cell line.

Encouraged by our previous findings, a series of pyrazolyl thiocarboamide derivatives **9a-i** were synthesized, characterized and evaluated their cytotoxicity. Analogues **9d, 9e** and **9g** showed significant cytotoxicity against a panel of three different human cancer cell lines namely; MCF-7 (human breast), NCI-H460 (human lung), HeLa (human cervix) and HEK-293T (Human embryonic kidney cells) normal cell line. as compared to standard drug etoposide. The compound **9g** exhibited superior activity with an IC₅₀ value of 9.74±0.35 μM against.

Furthermore, a series of pyrazolyl aminopyrimidine derivatives **10a-i** were synthesized, characterized and evaluated their cytotoxicity. Compounds **10b**, **10c**, **10d**, **10e**, **10f**, **and 10g** showed significant cytotoxicity against a panel of three different human cancer cell lines (Hela, NCI-H460, PC-3) and normal cell line (NIH-3T3) as compared to standard drug etoposide. The compound **10g** exhibited superior activity with an IC₅₀ values of 5.47±0.44 μM against Hela cancer cell line.