Name of the Scholar: Mir Mohammad Masood

Name of the Supervisor: Prof. Amir Azam Name of the Co-supervisor: Dr. Mohammad Abid

Name of the Department: Department of Chemistry, Jamia Millia Islamia, New Delhi

Title of Thesis: Synthesis, biological evaluation and docking studies of some novel heterocyclic compounds.

Keywords: Diketo acids, Amino acid-triazole hybrids, 1,3-thiazoles, 1,2,3-triazole-quinazolinone conjugates, Biological studies, Cytotoxicity, Molecular docking, ADME prediction.

ABSTRACT

The present research work deals with the synthesis, biological evaluation and docking studies of some novel heterocyclic compounds. The thesis comprises of five chapters.

Chapter-1 deals with the general introduction, literature reviews of heterocyclic compounds. The biological importance of heterocyclic compounds has been discussed.

Chapter-2 deals with the designing and synthesis of diketo esters, diketo acids, and their amino acid/dipeptidic analogues. Thirty-two compounds were synthesized and characterized by various spectroscopic techniques. The results of *in vitro* antibacterial screening of synthesized compounds revealed fifteen compounds (**1a–c**, **1e–h**, **1j**, **1l**, **2a–c**, **3d**, **5c** and **5e**) as potent against different bacterial strains. By using the MTT assay on human cell line (HepG2), the viability of cell proliferation was evaluated and nine compounds (**1c**, **1e**, **1j**, **1l**, **2a**, **2b**, **3d**, **5c** and **5e**) showed no cytotoxic effect at the concentration range of 50–450 µg/mL. In the biochemical evaluation against purified methionine aminopeptidase (MetAPs) from *Streptococcus pneumonia* (*Sp*MetAP), *Mycobacterium tuberculosis* (*Mt*MetAP), *Enterococcus faecalis* (*Ef*MetAP) and human (*Hs*MetAP), compounds displayed differential behavior against these four enzymes.

Chapter-3 deals with designing and synthesis of amino acid-triazole hybrids as anti-leishmanial agents. The synthesized compounds were screened *in vitro* against the promastigote form of *Leishmania donovani* (Dd8 strain). Among the eighteen synthesized compounds, three compounds **6d**, **6g** and **6q** were found to be most potent growth inhibitors with $IC_{50} = 88.83 \pm 2.93$, 96.88 ± 12.88 ,

and $94.45 \pm 6.51 \mu$ M respectively and displayed no cytotoxicity towards macrophage cells. Supported by docking studies, the lead inhibitors (**6d**, **6g** and **6q**) showed interactions with key residues in the catalytic site of trypanothione reductase.

Chapter-4 deals with the synthesis, characterization and antimicrobial evaluation of 2,4-disubstituted thiazoles. The structure of the compounds was established using various spectroscopic techniques and X-ray crystallography was performed for compound **1**. The synthesized compounds were screened for their *in vitro* antimicrobial activity. Out of twenty-three compounds, nine compounds (**2a**, **2b**, **2f**, **4a**, **4c**, **4d**, **4e** and **4f**) showed comparatively lower IC₅₀ values against the tested microbial strains. The three compounds (**2f**, **4c** and **4e**) were selected as promising inhibitors among the synthesized compounds and hemolysis as well as *in vitro* cytotoxicity results of the lead compounds revealed their non-toxic nature. The docking studies of lead inhibitors (**2f**, **4c** and **4e**) showed good binding interactions with bacterial methionine aminopeptidase (MetAP). The significant antimicrobial activity of some of the synthesized compounds and good *in silico* ADME properties highlights them as promising molecules for further synthetic and biological exploration.

Chapter-5 deals with the synthesis of thirty-four 1,2,3-triazole-quinazolinone conjugates. The structural analysis was further confirmed by X-ray crystallographic studies for compounds **2** and **5c**. Compounds, **5g**, **5n** and **6e** show activity against all the three strains of Candida, viz. *C. albicans, C. glabrata* and *C. tropicalis* with IC₅₀ values in the range $8.36 \pm 1.31 \,\mu$ g/mL to $65.58 \pm 3.20 \,\mu$ g/mL. The compound **5n** emerged as a most potent inhibitor among compounds (**5a–5q**) and **6e** among compounds (**6a–6q**). The hemolysis results of compounds **5e**, **5g**, **5n**, **6c**, **6e** and **6n** revealed non-toxic nature of these compounds. The docking studies of compounds (**5e**, **5n** and **6e**) with lanosterol 14 α -demethylase (CYP51) of *C. glabrata* (PDB ID: 5JLC) showed good binding interactions. Further, *in silico* ADME prediction of synthesized compounds indicated that compounds have a potential to develop as good oral drug candidate.