Name: Fareha Bano

Supervisor: Prof. Tasneem Fatma

Department: Biosciences

Title: "Effect of Environmetal Pollution on β-Carotene and Astaxanthin Pigment of

Cyanobacteria"

ABSTRACT

Objectives

- i. Screening of cyanobacterial strains for β -carotene and astaxanthin
- ii. Optimization of culture conditions of the best strain for β -carotene and astaxanthin
- iii. Effect of environmental pollution (heavy metals, pesticide) on β -carotene, astaxanthin, free radicals (MDA) and antioxidant enzyme on selected strains(s)
- iv. Characterization of β -carotene and astaxanthin (TLC & HPLC) of the best strain

Result

- I. 53 cyanobacterial strains were screened to check the presence of β -carotene and Astaxanthin. Highest β -carotene (8.9796 μ g mg⁻¹) and Astaxanthin (6.856 μ g mg⁻¹) was found in *Hapalosiphon fontinalis*.
- II. Maximum β carotene (52.95%) and astaxanthin (56.36%) was observed on 8^{th} day under 25 min UV stress.
- III. Highest biomass yield (0.163g L⁻¹) was obtained in 20:4 light/dark regime on 20^{th} day while, β carotene and astaxanthin was highest on 8^{th} day.
- IV. Maximum growth (0.108 g L⁻¹) was observed on 20^{th} day in 10mM NaCl. The highest β -carotene (61.42%) and astaxanthin (48%) was observed on 8^{th} day.
- V. Highest growth (0.118 g L⁻¹) was observed on 20^{th} day at 50mM sodium acetate, and β -carotene (51.03%) and astaxanthin (56.28%) was observed on 4^{th} day.
- VI. Highest β carotene (89%) was observed on 8th day in pH 8 but, the highest astaxanthin (16.36%) was observed in pH 9.

- VII. Highest reduction (51.38%) in growth was observed on 20th day under 0.5mM chromium. Chlorophyll showed 82.9% decrease at 0.5 mM Cr. β-carotene and astaxanthin and total protein increased maximally at 0.4 mM Cr respectively. TBARS levels increased in dose dependent manner. Highest SOD, CAT, APX was at 0.3mM.
- VIII. Reduction in growth (51.1%) and chlorophyll (62.8%) was observed in 0.009mM cadmium. But β-carotene and astaxanthin enhanced up to 0.005mM Cd. TBARS, SOD, CAT, APX was enhanced in dose dependent manner. Protein content increases till 0.005mM cadmium
 - IX. The highest reduction in growth, chlorophyll, β-carotene and astaxanthin at 0.09 mM copper. But TBARS, SOD, CAT, APX and protein were enhanced maximally at 0.09mM copper.
 - X. The highest reduction in growth was noticed in 125 μg mL⁻¹ malathion on 20th day. Chlorophyll was increased till 50 μg mL⁻¹ malathion. Carotenoids decreased in low concentration of malathion (25, 50 μg mL⁻¹) and then increased. Maximum enhancement in TBARS, SOD, CAT, APX was at 125 μg mL⁻¹ malathion. Maximum increase in total protein was at 100 μg mL⁻¹ malathion.
 - XI. During TLC analysis Two bands were identical with β carotene and astaxanthin standards.
- XII. The HPLC analysis showed one major peak at 54.733 min and was identified as β carotene.

In response to toxic effect of polluatnts, the level of antioxidants viz. carotenoids, superoxide dismutase, catalase and ascorbate peroxidase were elevated to survive under these adverse condition. These finding suggests that *Hapalosiphon fontinalis* can be consider as an alternative source of β - carotene production and due to its tolerant nature, it is advised to always include in rice field cyanobacterial inoculums mixture.
