Name: Sana kauser Notification No: 583/2025

Topic: Antifungal potential and mode of Notification date: 30-07-2025 action of *Nigella sativa* seed essential oil

Department: Biosciences F/O Natural sciences

Supervisor Name: Prof. Nikhat Manzoor

and its major bioactive components

Findings

Fungal infections, particularly candidiasis caused by Candida albicans and emerging non-albicans species, are increasing due to rising drug resistance and toxicity of conventional antifungals. This study evaluated the antifungal potential and mechanism of Nigella sativa seed essential oil (NSSEO) and its major constituents, thymoquinone and thymol, against C. albicans, C. tropicalis, and C. glabrata. NSSEO was extracted by hydro distillation and characterised by GC–MS, revealing thymoquinone (26.85%) and thymol (19.47%) as the dominant components. Broth microdilution, disc diffusion, and time-kill assays showed concentration-dependent fungicidal activity, with minimal toxicity compared to fluconazole. Mechanistic studies demonstrated reduced ergosterol biosynthesis and downregulation of ERG11, indicating interference with membrane integrity. Inhibition of H+-ATPase activity, SEM imaging, and PI/CFW staining confirmed membrane disruption and cell death. NSSEO and its components also suppressed the secretion of hydrolytic enzymes, the yeast-to-hyphal transition, adhesion, and biofilm formation, accompanied by the downregulation of key virulence genes (SAP2, PLB1, ALS3, and HWP1). Among the tested strains, C. albicans was most susceptible. Overall, NSSEO, thymoquinone, and thymol exhibit potent, multitargeted antifungal activity with low cytotoxicity, highlighting their promise as safe, mechanism-based alternatives to current antifungal agents and potential adjuncts in combating drug resistance.