Notification No: 579/2025

Date of Award: 30-05-2025

Name of Scholar: Anam Rais

Name of Supervisor: Prof. Luqman Ahmad Khan, Faculty of Life Sciences, JMI

Name of Co-Supervisor: Dr. Tulika Prasad, SCNS & AIRF, JNU, New Delhi

Name of Co-Supervisor: Dr. Kamla Rawat, Jamia Hamdard, New Delhi

Name of Department: Biosciences

Topic of Research: Synthesis and Biomedical applications of Quantum Dots using

Candida albicans as model organisms

Findings

This study aimed to develop non-toxic, cost-effective, novel fluorescent CQDs nanoconjugates as a powerful tool for medical and biological research using Candida albicans as a model representative fungal pathogen. First section of the study showed synthesis of CQDs (pCQDs, nCQDs, sCQDs and gCQDs) by simple, economical and low-cost microwave method and their unique physicochemical properties were characterized. In the second section, cytocompatibilty and microbial toxicity of CQDs were evaluated against mammalian cell lines, NIH-3T3 and fungal pathogen, C. albicans respectively, for determining their biocompatible and non-toxic nature. No toxicity of CQDs were observed towards NIH-3T3 and Candida cells. Then, CQDs being non-toxic, cellular uptake and imaging were performed in C. albicans for use of CQDs in versatile imaging application. In the third section, pCQDs as nanotrackers for imaging of drug sensitive G1 and drug resistance G5 Candida strains as well as yeast to hyphal morphogenesis in fungal pathogens were examined through confocal microscopy and AFM. The pCQDs efficiently internalized in G1 and G5 Candida strains as well as augmented yeast to hyphal morphogenesis in fungal pathogens, without affecting transition. In the final section, the fluorescent CQDs were demonstrated for targeted imaging application after functionalization with ergosterol (Erg) to form pCQD-Erg conjugates. Uptake and sub cellular localization of pCQD-Erg conjugates were shown using confocal microscopy in morphological (yeast and hyphal) forms of pathogenic fungus, C. albicans.

Thus, the thesis clearly establishes that biocompatible CQDs and CQDs nanoconjugates possess promising potential as next-generation multifunctional alternative nanotrackers for targeted *in vitro* and *in vivo* imaging.

- Summary of Abstract
- 2. Soft copy in PDF format with Hardcopy